
Introduction to Intel oneAPI
for HPC and AI-DL

OneAPI – 가속 컴퓨팅을 개발하기 위한 스마트한 방식

2020. 1. 21.
MOASYS

Outline

▪ What is oneAPI?

▪ Intel oneAPI DPC++ Programming

▪ High-performance computing (HPC)

▪ Machine learning, Deep learning, and analytics

Programming Challenges for Multiple Architectures

▪ Growth in specialized workloads

▪ Variety of data-centric hardware required

▪ Separate programming models and toolchains for
each architecture are required today

▪ Software development complexity limits freedom of
architectural choice

Scalar Vector Spatial Matrix

Middleware & Frameworks

XPUs

Application Workloads Need Diverse Hardware

CPU
programming

model

GPU
programming

model

FPGA
programming

model

Other accel.
programming

models

CPU GPU FPGA Other accel.

oneAPI: One Programming Model for Multiple Architectures and Vendors

▪ Freedom to Make Your Best Choice

▪ Choose the best accelerated technology the software
doesn’t decide for you

▪ Realize all the Hardware Value

▪ Performance across CPU, GPUs, FPGAs, and other
accelerators

▪ Develop & Deploy Software with Peace of Mind

▪ Open industry standards provide a safe, clear path to the
future

▪ Compatible with existing languages and programming
models including C++, Python, SYCL, OpenMP, Fortran, and
MPI

Industry

Initiative

Intel

Product

Scalar Vector Spatial Matrix

Middleware & Frameworks

XPUs

Application Workloads Need Diverse Hardware

CPU GPU FPGA Other accel.

oneAPI Industry Initiative: Break the Chains of Proprietary Lock-in

▪ Open to promote
community and
industry collaboration

▪ Enables code reuse
across architectures
and vendors

Middleware & Frameworks

Application Workloads Need Diverse Hardware

API-Based ProgrammingDirect Programming

Low-Level Hardware Interface

Math Threading DPC++ Library

Analytics/

ML
DNN ML Comm

Video Processing

Libraries

Data Parallel C++

XPUs

oneAPI Industry Specification

CPU GPU FPGA Other accel.

..

.
A cross-architecture

language based on C++
and SYCL standards

Powerful libraries designed
for acceleration of domain-

specific functions

Low-level hardware
abstraction layer

Data Parallel C++: Standards-based, Cross-architecture Language

▪ Freedom of Choice: Future-Ready Programming Model

▪ Allows code reuse across hardware targets

▪ Permits custom tuning for a specific accelerator

▪ Open, cross-industry alternative to proprietary language

▪ DPC++ = ISO C++ and Khronos SYCL and community
extensions

▪ Delivers C++ productivity benefits, using common, familiar C and
C++ constructs

▪ Adds SYCL from the Khronos Group for data parallelism and
heterogeneous programming

▪ Community Project Drives Language Enhancements

▪ Provides extensions to simplify data parallel programming

▪ Continues evolution through open and cooperative development

Direct Programming:

Data Parallel C++

Community Extensions

Khronos SYCL

ISO C++

DPC++ = ISO C++ and Khronos SYCL and community extensions

Intel oneAPI DPC++ Programming

▪ DEVICE SELECTOR

▪ The device_selector class enables the runtime selection of a particular device to execute kernels based
upon user-provided heuristics.

▪ The following code sample shows use of the standard device selectors(default_selector, cpu_selector,
gpu_selector…) and a derived device_selector

Intel oneAPI DPC++ Programming

▪ QUEUE

▪ A queue submits command groups to be executed by the SYCL runtime

▪ Queue is a mechanism where work is submitted to a device.

▪ A Queue map to one device and multiple queues can be mapped to the same device.

Intel oneAPI DPC++ Programming

▪ KERNEL

▪ The kernel class encapsulates methods and data for executing code on the device when a command
group is instantiated

▪ Kernel object is not explicitly constructed by the user

▪ Kernel object is constructed when a kernel dispatch function, such as parallel_for, is called

Intel oneAPI DPC++ Programming

▪ Parallel Kernels

▪ Parallel Kernel allows multiple instances of an operation to execute in parallel.

▪ Useful to offload parallel execution of a basic for-loop in which each iteration is completely independent
and in any order.

▪ Parallel kernels are expressed using the parallel_for function

for-loop in CPU application Offload to accelerator using parallel_for

Intel oneAPI DPC++ Programming

▪ Basic Parallel Kernels

▪ The functionality of basic parallel kernels is exposed via range, id and item classes

▪ range class used to describe the iteration space of parallel execution

▪ id class is used to index an individual instance of a kernel in a parallel execution

▪ item class represents an individual instance of a kernel function, exposes additional functions to query
properties of the execution range

Intel oneAPI DPC++ Programming

▪ ND-Range Kernels

▪ Basic Parallel Kernels are easy way to parallelize a for-loop
but does not allow performance optimization at hardware
level.

▪ ND-Range kernel is another way to expresses parallelism
which enable low level performance tuning by providing
access to local memory and mapping executions to compute
units on hardware.

Intel oneAPI DPC++ Programming

▪ Intel DPC++ Compatibility Tool

▪ Minimizes Code-Migration Time

▪ Assists developers migrating code written in
CUDA to DPC++ by generating DPC++ code
wherever possible

▪ Expect up to 80-90% of code to migrate
automatically

▪ Inline comments are provided to help developer
complete code

$ dpct vector_add.cu
$ dpcpp vector_add.dp.cpp

Intel oneAPI DPC++ Programming

Header

Kernel definition

CUDA: 1D

SYCL: 3D (general)

USM allocation

Kernel execution

CUDA: 1 thread block

SYCL: 1 work group

Data movement

Deallocation

Device selection

Queue intialization

Generic C code

No migration

#include <cuda.h>
#include <stdio.h>
#define VECTOR_SIZE 256

__global__ void VectorAddKernel(float* A, float* B, float* C)
{

A[threadIdx.x] = threadIdx.x + 1.0f;
B[threadIdx.x] = threadIdx.x + 1.0f;
C[threadIdx.x] = A[threadIdx.x] + B[threadIdx.x];

}

int main()
{

float *d_A, *d_B, *d_C;

cudaMalloc(&d_A, VECTOR_SIZE*sizeof(float));
cudaMalloc(&d_B, VECTOR_SIZE*sizeof(float));
cudaMalloc(&d_C, VECTOR_SIZE*sizeof(float));

VectorAddKernel<<<1, VECTOR_SIZE>>>(d_A, d_B, d_C);

float Result[VECTOR_SIZE] = { };
cudaMemcpy(Result, d_C, VECTOR_SIZE*sizeof(float), cudaMemcpyDeviceToHost);

cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);

for (int i = 0; i < VECTOR_SIZE; i++) {
if (i % 16 == 0) {

printf("\n");
}
printf("%f ", Result[i]);

}

return 0;
}

#include <CL/sycl.hpp>
#include <dpct/dpct.hpp>
#include <stdio.h>
#define VECTOR_SIZE 256

void VectorAddKernel(float* A, float* B, float* C, sycl::nd_item<3> item_ct1)
{

A[item_ct1.get_local_id(2)] = item_ct1.get_local_id(2) + 1.0f;
B[item_ct1.get_local_id(2)] = item_ct1.get_local_id(2) + 1.0f;
C[item_ct1.get_local_id(2)] = A[item_ct1.get_local_id(2)] + B[item_ct1.get_local_id(2)];

}

int main()
{

dpct::device_ext &dev_ct1 = dpct::get_current_device();
sycl::queue &q_ct1 = dev_ct1.default_queue();
float *d_A, *d_B, *d_C;

d_A = sycl::malloc_device<float>(VECTOR_SIZE, q_ct1);
d_B = sycl::malloc_device<float>(VECTOR_SIZE, q_ct1);
d_C = sycl::malloc_device<float>(VECTOR_SIZE, q_ct1);

q_ct1.submit([&](sycl::handler &cgh) {
cgh.parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, VECTOR_SIZE), // global

sycl::range<3>(1, 1, VECTOR_SIZE)),// local
[=](sycl::nd_item<3> item_ct1) {

VectorAddKernel(d_A, d_B, d_C, item_ct1);
});

});

float Result[VECTOR_SIZE] = { };
q_ct1.memcpy(Result, d_C, VECTOR_SIZE * sizeof(float)).wait();

sycl::free(d_A, q_ct1);
sycl::free(d_B, q_ct1);
sycl::free(d_C, q_ct1);

for (int i = 0; i < VECTOR_SIZE; i++) {
if (i % 16 == 0) {

printf("\n");
}
printf("%f ", Result[i]);

}

return 0;
}

Intel oneAPI Libraries

▪ Intel oneMKL

Linear Algebra

BLAS

LAPACK

ScaLAPACK

Sparse BLAS

Graph

PARDISO/Direct
Sparse Solver

Cluster Sparse
Solver

FFTs

Multi-

dimensional

FFTW interfaces

Cluster FFT

Vector RNGs

Engines

Distributions

Summary
Statistics

Kurtosis

Variation
coefficient

Min/max

Order Statistics

Variance-
covariance

Vector Math

Trigonometric

Hyperbolic

Exponential

Log

Power

Root

And More

Splines

Interpolation

Trust Region

Fast Poisson
Solver

Beta Intel® Processor Graphics Gen9/Gen12

& Intel discrete GPU support
Limited - Intel® Processor Graphics Gen9/Gen12 & Intel

discrete GPU (see release notes) CPU C/Fortran support

Intel oneAPI Libraries

▪ Intel oneMKL

▪ Accelerate Math Processing, Increase Application Performance

▪ Language support for DPC++ and Intel® C & Fortran compilers

▪ Available at no cost and royalty-free

▪ Great performance with minimal effort

▪ Full support for CPUs and select support for Intel® Processor
Graphics Gen9, Gen12, and discrete Intel® GPUs

▪ Speeds computations for scientific, engineering, and financial
applications by providing highly optimized, threaded, and
vectorized math functions

▪ Provides key functionality for dense and sparse linear algebra
(BLAS, LAPACK, PARDISO), FFTs, vector math, summary statistics,
splines, and more

▪ Dispatches optimized code for each processor automatically
without the need to branch code

▪ Optimized for single-core vectorization and cache utilization

▪ Automatic parallelism for multi-core CPUs, GPUs, and scales from
core to clusters

Dense Linear Algebra

Sparse Linear Algebra

Fast Fourier Transforms

Vector Math

Vector RNGs

Summary Statistics

Intel® oneAPI Math Kernel Library offers

Intel oneAPI Libraries

▪ Intel oneTBB

▪ Advanced Scaling for Fast Applications

▪ Flexible C++ Library for Parallelism

▪ An easy way for developers to express parallelism in applications without the need to have deep hardware
knowledge

▪ Future Proof & Scale Application Performance

▪ Effectively parallelize and scale performance for computationally intensive workloads on current and future
platforms

▪ Compatible with Other Threading Packages

▪ Keep legacy code as-is and use oneTBB for new implementations. Seamlessly coexist with other threading
packages

▪ Simplified and Enhanced Application Composability

▪ Create composable, scalable parallelism on the CPU, and extendable with enhanced handling of accelerators

Intel oneAPI Libraries

▪ oneTBB Architecture Overview

▪ A Collection of Building Blocks to Develop Highly
Scalable Threaded Applications

▪ Includes high-level parallel execution interfaces

▪ Parallel Loops: parallel_for, parallel_reduce, etc.

▪ Complex Algorithms: pipelines, task groups

▪ Flow Graph: Expressing data flow independent
graphs

▪ All build on top of TBB tasks, these tasks execute
on top of the TBB scheduler

▪ Scheduler controls & parallel loops controls to tightly
control performance

▪ Concurrent Containers - Queues, Vectors, etc. are
thread safe and thread friendly

▪ Scalable memory allocator, synchronization primitives

Intel® MPI Library: Flexible, Efficient and Scalable Cluster Messaging

Optimized MPI Application Performance

 Application-specific tuning

 Automatic tuning

 Support for latest Intel® Xeon® Scalable Processors

Lower Latency and Multi-vendor Interoperability

 Industry-leading latency

 Performance-optimized support for the fabric capabilities

through OpenFabrics Interfaces (OFI)

Faster MPI Communication

 Optimized collectives

Sustainable scalability

 Native InfiniBand interface support allows

 Lower latencies, higher bandwidth, reduced memory requirements

Key Updates

 Intel® GPU pinning support

 Distributed Asynchronous Object Storage (DAOS) support

 Intel® Xeon® Platinum processor 92XX optimizations

 Mellanox ConnectX: 3/4/5/6 (FDR/EDR/HDR) support enhancements

Using Intel Analysis Tools to Increase Performance

Intel® Advisor

Intel® VTune™ Profiler

Intel® Inspector

Intel® Trace Analyzer & Collector

Intel® Cluster Checker

Optimize your

kernels

Use Offload Advisor to

find kernels to offload

Intel® Advisor - Offload Advisor: Efficiently offload code to GPUs

Starting from an optimized binary (running on CPU)

 Identify high-impact opportunities to offload

 Detect bottlenecks and key bounding factors

 Get your code ready even before you have the hardware by modeling performance, headroom, and bottlenecks

Intel® Advisor - GPU Roofline: Find effective optimization strategies

Configure levels to

display

Shows performance headroom

for each loop

Likely bottlenecks

Suggests optimization next

steps

Quickly find & fix performance bottlenecks, realize all the value of your hardware
▪ See performance headroom against hardware limitations

▪ Determine performance optimization strategy by identifying bottlenecks and which optimizations will pay off the most

▪ Visualize optimization progress

Intel® VTune™ Profiler: Analyze and Tune Application Performance

Save Time Optimizing Code

 Accurately profile C, C++, Fortran, Python, Go, Java

 Optimize CPU, threading, memory, cache, storage

 Take advantage of Priority Support†

What’s New in 2021.1 Release (partial list)

 Production release of Platform Profiler

 Design & optimize for Intel® Optane™ DC Persistent

Memory

 Application Performance Snapshot

 Add communication-pattern diagnosis

 Profile more ranks

 Linux

 Extensive perf-enables analysis without adding drivers

https://supporttickets.intel.com/

Intel® VTune™ Profiler: GPU Architecture Summary

Intel Gen9 GPU details:

▪ 24EU x 7thr = 168 threads

▪ 128 General-Purpose Registry File (GRF) of 32 bytes

▪ 2 SIMD-4 FPU of 32-bit FP or INT data

▪ 16 MAD/cycle (ADD+MUL) x 2FPUs x SIMD-4

▪ 2 additional units: Branch and Send

Intel® VTune™ Profiler: Optimize Your GPU Usage

Quickly Find & Fix Performance Bottlenecks
 Explore code execution on your platform’s various CPU and GPU cores

 Identify whether your application is GPU- or CPU-bound

GPU offload:
 Identifying how effectively your application uses DPC++ or OpenCL kernels

 Exploring GPU usage and analyzing a software queue for GPU engines at each moment of time

GPU hotspots:

 Analyze the most time-consuming GPU kernels, characterize GPU usage based on GPU hardware metrics

 GPU code performance at the source-line level and kernel-assembly level

Intel® Inspector: Locate & Debug Threading, Memory Errors

Find and eliminate

▪ Memory leaks, invalid access

▪ Persistent memory errors

▪ Races & deadlocks

▪ C, C++ and Fortran (or a mix)

Simple, Reliable, Accurate

▪ No special recompiles: use any build, any compiler

▪ Analyzes dynamically generated or linked code

▪ Inspects 3rd party libraries without source

▪ Command line for automated regression analysis

Faster Diagnosis with Debugger Breakpoints

▪ Breakpoint set just before the problem occurs

▪ Examine variables and threads with the debugger

Features
Memory

Analysis

Threading

Analysis

Persistence

Memory

View context of problem

Stack

Multiple Contributing Source Locations

✔

✔

✔

✔

✔

✔

Collapse multiple “sightings” to one error ✔ ✔ ✔

Suppress, Filter, Workflow Management ✔ ✔ ✔

Visual Studio Integration (Windows) ✔ ✔ ✔

Command line for automated tests ✔ ✔ ✔

Timeline visualization ✔ ✔

Memory growth during a transaction ✔

Trigger debugger breakpoints ✔ ✔

Intel® Trace Analyzer & Collector: Profile & Analyze MPI Application

Debug MPI applications:

▪ GDB

▪ Allinea DDT

▪ gtool

Scale MPI applications:

▪ Scale performance: perform on more nodes

▪ Scale forward: multi-core ready

▪ Scale efficiently: tune and debug on more nodes

Analyze, tune & optimize:

▪ Identify communication hotspots

▪ Evaluate profiling statistics and load balancing

▪ Visualize and understand parallel application behavior

▪ Analyze common MPI issues

Mechanism Advantages Disadvantages

Run with -trace
Automatic collection of MPI calls

No medication to source, compile or lihnk

No collection of user code

Requires dynamic link to MPI

Link with -trace Automatic collection of MPI calls
No collection of user code

Must be done at link time

Compile with -tcollect Automatic collection of all functions entries/exits Requires code re-compilation

Add API calls Selective collection of desired code sections Requires code modification

MPI event timeline

MPI correctness checking

warnings errors

Intel® Cluster Checker: Functionality, Uniformity & Performance Tests

Comprehensive pre-packed cluster systems expertise out-of-the-box
▪ Suitable for HPC experts and those new to HPC

▪ Tests can be executed in selected groups on any subset of nodes

Certifying, Testing, and Troubleshooting Clusters
▪ Check over 100 characteristics that may affect operation and performance

▪ Catch issues, identify details or remedies

▪ Use for better uptime and productivity

▪ Free download, can be redistributed

Priority Support available for Intel® oneAPI Base & HPC Toolkits in commercial versions

Summary Output
& Log File

Performance

Functionality Uniformity

Functionality Tests Uniformity Tests Performance Tests

System-level

• Node

• Connectivity

• Cluster

Validation

• Application platform c

ompliance

• Solution compliance

Hardware

• CPUs

• Memory

• Interconnect

• Disks

Software

• Installed packages

and versions

• numerous kernel and

BIOS settings

Benchmarks

• DGEMM

• HPCG

• HPL

• Intel® MPI Benchmarks

• IOzone

• STREAM

API Available for Integration

Intel® Cluster Checker

Get Compact Reports, Find Problems, Validate Status

Intel oneAPI AI Analytics Toolkit

Accelerate libraries with Intel® Distribution for Python*

▪ High Performance Python for Scientific Computing, Data Analytics, Machine Learning

Performance Optimization

▪ The layers of quantitative Python*

▪ The Python* language is interpreted and has
many type checks to make it flexible

▪ Each level has various tradeoffs; NumPy*
value proposition is immediately seen

▪ For best performance, escaping the Python
layer early is best method

Installing Intel® Distribution for Python* 2020

OneAPI Deep Neural Network Library (OneDNN)

▪ Features:

▪ API: DPC++, C++, and C

▪ Training: float32, bfloat16

▪ Inference: float32, float16, bfloat16, int8

▪ MLPs, CNNs (1D, 2D and 3D), RNNs (plain, LSTM, GRU)

▪ Support matrix:

▪ Compilers: Intel, GCC, CLANG, MSVC

▪ OSes: Linux*, Windows*

▪ CPU engine:

▪ HW: Intel Atom®, Intel® Core™, Intel® Xeon®

▪ Runtimes: DPC++, OpenMP, TBB

▪ GPU engine:

▪ HW: Intel® HD Graphics, Intel® Iris® Plus Graphics

▪ Runtimes: DPC++, OpenCL™

OneAPI Deep Neural Network Library (OneDNN)

Intel oneAPI Collective Communications Library (OneCCL)

▪ Optimized communication patterns cross nodes

▪ Provides optimized communication patterns for high performance on Intel® CPUs and GPUs to
distribute model training across multiple nodes

▪ support many interconnects

▪ such as Intel® Omni-Path Architecture, InfiniBand*, and Ethernet

▪ On top of MPI and libfabrics

▪ Built on top of lower-level communication middleware – MPI and libfabrics

▪ All –gather, all-reduce for Deep Learning

▪ Enables efficient implementations of collectives used for deep learning training – all-gather, all-
reduce

Intel oneAPI Collective Communications Library (OneCCL)

▪ Provides optimized communication
patterns for high performance on
Intel® CPUs and GPUs to distribute
model training across multiple nodes

▪ Transparently supports many
interconnects, such as Intel® Omni-
Path Architecture, InfiniBand*, and
Ethernet

▪ Built on top of lower-level
communication middleware – MPI and
libfabrics

Introduction to Intel Devcloud

▪ oneAPI available now on Intel® DEVCLOUD

▪ A development sandbox to develop, test and run
your workloads across a range of Intel CPUs, GPUs,
and FPGAs using Intel’s oneAPI software

▪ software.intel.com/devcloud/oneapi

▪ A Fast Way to Start Coding

▪ Try the oneAPI toolkits, compilers, performance
libraries, and tools

▪ Get 120 days of free access to the latest Intel®

hardware and oneAPI software

1 Minute to Code

No Hardware Acquisition

No Download, Install or Configuration

Easy Access to Samples & Tutorials

Support for Jupyter Notebooks, Visual Studio Code

DevCloud

Summary

▪ Diverse workloads are driving the need for heterogeneous compute
architectures, but each architecture has required separate programming
models.

▪ oneAPI cross-architecture programming model provides freedom of choice.
Apply your skills to the next innovation, not to rewriting software for the next
hardware platform.

▪ Intel® oneAPI products take full advantage of accelerated compute by
maximizing performance across Intel CPUs, GPUs, and FPGAs.

▪ Develop confidently with a proven set of cross-architecture libraries and
advanced tools that interoperate with existing performance programming
models.

THANK YOU

