
Optimization and GPU Offloading Workflow with Intel oneAPI

oneAPI – 가속 컴퓨팅을 개발하기 위한 스마트한 방식

2021. 10. 28.
MOASYS

Content

▪ oneAPI Compilers and Analytics Tool

▪ Intel Optimization Workflow:
I. Compiler Optimization Report

II. Application Performance Snapshot

III. Memory Access Analysis

IV. CPU Roofline Analysis

V. GPU Offload Modeling

VI. GPU Roofline Analysis

VII. Minimization of Analysis Overhead

▪ Conclusion

1

oneAPI: One Programming Model for Multiple Architectures and Vendors

2

▪ Freedom to Make Your Best Choice

▪ Choose the best accelerated technology the software doesn’t decide
for you

▪ Realize all the Hardware Value

▪ Performance across CPU, GPUs, FPGAs, and other accelerators

▪ Develop & Deploy Software with Peace of Mind

▪ Open industry standards provide a safe, clear path to the future

▪ Compatible with existing languages and programming models
including C++, Python, SYCL, OpenMP, Fortran, and MPI

Industry

Initiative

Intel

Product

Scalar Vector Spatial Matrix

Middleware & Frameworks

XPUs

Application Workloads Need Diverse Hardware

CPU GPU FPGA Other accel.

Intel Xe Architecture: Building the Foundation for Exascale Computing

▪ Intel architecture day 2020:
▪ https://newsroom.intel.com/wp-content/uploads/sites/11/2020/08/Intel-Architecture-Day-2020-Presentation-Slides.pdf

▪ Xe-HP can scale up to 4 tiles with a peak FP32 performance of 42 Tflops

3

https://newsroom.intel.com/wp-content/uploads/sites/11/2020/08/Intel-Architecture-Day-2020-Presentation-Slides.pdf

A New Era of Accelerated Computing

▪ Roofline Analysis: get insights about performance headroom against hardware limitations.

▪ Offload Advisor: get your code ready for efficient GPU offload before buying the hardware.

4

Heterogeneous Computing with Intel Compilers

▪ icc/icpc/ifort: classic Intel HPC compilers

▪ icx/ifx: next generation compilers based on Clang/LLVM with Intel proprietary technologies

▪ Support for OpenMP offloading to Intel GPUs

▪ dpcpp: Intel implementation of SYCL standard

▪ https://www.khronos.org/sycl/

▪ SYCL = High level abstraction C++ and OpenCL runtime to target heterogenous architectures.

▪ intel-llvm: open-source development version of dpcpp

▪ https://github.com/intel/llvm

▪ Experimental support for NVIDIA devices using CUDA PTX backend

5

Compiles Targets OpenMP OpenMP Offload Toolkits

icc/icpc CPU Yes No HPC

ifort CPU Yes No HPC

icx CPU/GPU Yes Yes Base

ifx CPU/GPU Yes Yes Base

dpcpp CPU/GPU/FPGA Yes Yes Base

intel-llvm CPU/GPU Yes Yes Open

https://www.khronos.org/sycl/
https://github.com/intel/llvm

Optimization Workflow I: Compiler Optimization Report

▪ Use compiler option -qopt-report=5
▪ Detailed information regarding optimizations done by Intel compilers (-O2)

6

LOOP BEGIN at matmul_baseline.c(89,5)
remark #15542: loop was not vectorized: inner loop was already vectorized

LOOP BEGIN at matmul_baseline.c(90,9)
remark #15542: loop was not vectorized: inner loop was already vectorized

LOOP BEGIN at matmul_baseline.c(92,13)
remark #15388: vectorization support: reference A[i*p+k] has aligned access [matmul_baseline.c(93,29)]
remark #15328: vectorization support: non-unit strided load was emulated for the variable <B[k*n+j]>, stride

is unknown to compiler [matmul_baseline.c(93,40)]
remark #15305: vectorization support: vector length 4
remark #15309: vectorization support: normalized vectorization overhead 0.250
remark #15355: vectorization support: *(C+(i*n+j)*4) is float type reduction [matmul_baseline.c(93,17)]
remark #15300: LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15448: unmasked aligned unit stride loads: 1
remark #15452: unmasked strided loads: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 11
remark #15477: vector cost: 10.000
remark #15478: estimated potential speedup: 1.090
remark #15488: --- end vector cost summary ---

LOOP END

LOOP END

LOOP END

A

B

C
void mat_mul(float *A, float *B, float *C,

int m, int n, int p) {
for (int i = 0; i < m; i++) {

for (int j = 0; j < n; j++)
for (int k = 0; k < p; k++)

C[i*n+j] += A[i*p+k] * B[k*n+j];

Optimization Workflow II : Application Performance Snapshot (APS)

▪ Command-line interface to generate HTML report: easy to use, low overhead, and high scalability

▪ For shared memory applications:

▪ For MPI applications:

▪ HTML report: aps_result_<date>

7

aps <my app> <app parameters>

<mpi launcher> <mpi parameters> aps <my app> <app parameters>

Optimization Workflow II : Application Performance Snapshot (APS)

▪ <Memory Level> Stalls definition:

▪ Percentage of cycles when the CPU is stalled (정지), waiting for data to come from <Memory Level>

8

Inefficient core utilization

In-depth analysis of memory traffic

High demand of load/store

In-depth Analysis with oneAPI Toolkits

▪ Trace Analyzer and Collector: understand MPI application for weak and strong scaling optimization

▪ VTune Profiler: CPU/GPU hotspot analysis, OpenMP threading efficiency, and memory access efficiency

▪ Advisor: vectorization efficiency, roofline analysis and GPU off-loading advisor

9

Optimization Workflow III: Memory Access Analysis

▪ The following command-line options are recommended for best experiences with Advisor:
▪ -g full debug information
▪ -O2 moderate optimization
▪ -no-ipo disable Intel’s inter-procedural optimization during offload modeling

▪ Perform survey with Advisor

▪ This shows loop hotspots and corresponding degree of vectorization

▪ Select loop on line #92 for memory access pattern (MAP) analysis:

▪ This shows whether an array has continuous memory access, i.e. unit stride
▪ Unit stride allow compiler to effectively vectorize the loop

▪ Perform memory access analysis with VTune Profiler:

▪ This show the amount of load/store/LLC miss

10

advisor -collect survey -project-dir ./result -- ./matmul.x

advisor -collect map –select matmul.c:92 -project-dir ./result -- ./matmul.x

vtune -collect memory-access -knob analyze-mem-objects=true -result-dir ./mem -- ./matmul.x

Optimization Workflow III: Cache Optimization to Improve Vectorization

11

for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)

for (int k = 0; k < p; k++)
C[i*n+j] += A[i*p+k] * B[k*n+j]

L1 Cached Unit stride
(Cache hit)

Constant stride
(Cache miss)

for (int i = 0; i < m; i++)
for (int k = 0; k < p; k++)

for (int j = 0; j < n; j++)
C[i*n+j] += A[i*p+k] * B[k*n+j]

Unit stride
(Cache hit)

L1 Cached Unit stride
(Cache hit) vtune memory-access

advisor map

Optimization Workflow III: Cache Optimization to Improve Vectorization

12

for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)

for (int k = 0; k < p; k++)
C[i*n+j] += A[i*p+k] * B[k*n+j]

Advisor

for (int i = 0; i < m; i++)
for (int k = 0; k < p; k++)

for (int j = 0; j < n; j++)
C[i*n+j] += A[i*p+k] * B[k*n+j]

Optimization Workflow IV: Arithmetic Intensity

▪ In a first order approximation, the performance of an application is assumed to be bound by:

▪ Machine theoretical Double Precision/Single Precision Peaks (FLOP/s)

▪ Memory bandwidth such as DRAM, L1, L2, L3 caches (Byte/s)

▪ Q: How can we combine machine’s theorical FLOPs and memory bandwidth in a single model ?

▪ A: Arithmetic Intensity

▪ Ratio of total floating-points operations to total data movement (FLOP/byte)

▪ AI is an intrinsic properties of algorithm, reflecting how effectively data in cache is reused:

▪ BLAS3 can archive higher AI via cache optimization techniques such as loop titling and low-level optimizations (oneMKL)

13

void mat_mul(float *A, float *B, float *C, int m, int n, int p) {
for (int i = 0; i < m; i++) {

for (int j = 0; j < n; j++)
for (int k = 0; k < p; k++)

C[i*n+j] += A[i*p+k] * B[k*n+j];

L1 Arithmetic Intensity for naïve matrix multiplication
• 2 flops (add + multiply)
• 12 bytes transfer (read A, B & write C)
• AI = 2/12 = 0.167 (FLOP/byte)

Optimization Workflow IV : Roofline Model

▪ Product between AI (software-intrinsic) and Memory BW (hard-intrinsic) has unit of FLOP/s

▪ Performance increases linearly as a function of AI (slope roof)

▪ Performance is also bound by machine theoretical peaks (horizontal roof)

▪ Roofline graph is represented in log to log scale:

▪ Increase memory bandwidth results in a vertical shift of the slope roof

▪ Hierarchical structure of cache can be represented in a single roofline graph

14

(log)

(l
o

g)

(Byte/s) (FLOP/Byte)

(FLOP/s)

Optimization Workflow IV: Hierarchical Roofline Model

▪ Each dot represents a loop:
▪ Bigger dots are more time-consuming loops: red > yellow > green

▪ Best candidate loops for optimizations: A and G

▪ Vectorization and threading moves dots vertically (higher GFLOPS):
▪ #pragma omp simd

▪ #pragma vector aligned

▪ Optimization of memory access moves dots horizontally (higher AI)

15

Optimization Workflow IV: Optimization Guides

16

Optimization Workflow IV: Intel® Advisor Roofline Analysis

▪ Generate performance survey and code analytics:

▪ Generate roofline graph:

▪ Generate roofline report in HTML format:

▪ View result with Advisior GUI:

17

advisor -collect survey -project-dir ./result -- ./matmul.x

advisor -collect tripcounts -flop -project-dir -enable-cache-simulation ./result -- ./matmul.x

advisor-gui result/result.advixeproj

advisor -report roofline -project-dir ./result -report-output ./roofline.html

Optimization Workflow IV: Cache Optimization Roofline

▪ What is the machine theoretical FLOPS and memory bandwidth ?

▪ Is the application mainly memory bound or compute bound ?

18

baseline
(0.15 GFLOPS)

cache opt
(4.7 GFLOPS)

Optimization Workflow IV: Data Aligned for Vectorization

▪ Use Intel intrinsics to align vectors at 64-byte boundary for AVX512 vectorization

19

for (i = 0; i < m; i++)
for (j = 0; j < n; j++)

for (k = 0; k < p; k++)
C[i*n+j] += A[i*p+k] * B[k*n+j]

for (i = 0; i < m; i++)
for (k = 0; k < p; k++)

for (j = 0; j < n; j++)
C[i*n+j] += A[i*p+k] * B[k*n+j]

float* A = (float*) _mm_malloc(sizeof(float)*m*p,64);
...
for (i = 0; i < m; i++)

for (k = 0; k < p; k++)
#pragma vector aligned
#pragma omp simd reduction(+:C[i*n+j])
for (j = 0; j < n; j++)

C[i*n+j] += A[i*p+k] * B[k*n+j];
_mm_free(A);

remark #15388: vectorization support: reference C[i*n+j] has aligned access [matmul_aligned.c(96,17)]
remark #15388: vectorization support: reference C[i*n+j] has aligned access [matmul_aligned.c(96,17)]
remark #15388: vectorization support: reference B[k*n+j] has aligned access [matmul_aligned.c(96,40)]

Optimization Workflow V: GPU Offload Modeling

20

▪ The following command-line options are recommended for best experiences with Advisor:

▪ -g full debug information

▪ -O2 moderate optimization

▪ -no-ipo disable Intel’s inter-procedural optimization during offload modeling

▪ Modeling performance on Intel DG1 GPU:

▪ Legacy HTML report:

▪ result_gen9/rank.0/pp000/data.0/report.html

advisor-python $(APM)/run_oa.py \
result_gen9 \
--config gen9_gt4 \
--collect basic \
--no-assume-dependencies
-- ./matmul.x

Optimization Workflow V: Modeling Performance on GPU

▪ Region X: memory bound and small offload tax

▪ Region Y: compute bound and high offload tax

21

Execution time on accelerator (compute-bound)

Execution time on accelerator (memory-bound)

Offload tax (memory transfer time + invoke)

Final estimation on target device (GPU)

Execution time on host

Optimization Workflow V: Gen9 Offload Modelling

22

Gen9 offers 2x potential speed up

Optimization Workflow V: Gen12 Offload Modelling

23

Xe LP Max offers 4.6x speed up

Optimization Workflow V: Customized GPU with Configuration Slider

▪ Use configuration slider to model custom GPU:
▪ Executing unit (EU): 96 → 192

▪ HBW: 54 GB/s → 96 GB/s

▪ Save new config file as scalers.toml

▪ Redo offload modeling

▪ Results:
▪ 8x performance gain vs 4.6x (default)

▪ For example, Xe-HP can support up to 512 EUs

24

advisor-python $(APM)/run_oa.py \
--result_new \
--config gen12_dg1 \
--config scalers.toml \
--collect basic \
--no-assume-dependencies \
-- ./matmul.x

(scalers.toml overrides default EU and HBW)

Estimation of Performance Gain on Xe HPC with Offload Advisor

▪ With Offload Advisor, you can estimate performance gain of your codes on new GPUs before buying.

▪ Configuration slider can be used to simulate higher-tier GPU such as Xe HP and Xe HPC

25

https://www.intel.com/content/www/us/en/newsroom/resources/press-kit-architecture-day-2021.html

https://www.intel.com/content/www/us/en/newsroom/resources/press-kit-architecture-day-2021.html

Optimization Workflow VI: DPCPP and OpenMP Offloading

▪ DPCPP port

▪ OpenMP offloading

26

sycl::device device(sycl::default_selector{});
sycl::queue queue(device);
...
float *A_USM = sycl::malloc_shared<float>(m * p, queue);
float *B_USM = sycl::malloc_shared<float>(p * n, queue);
float *C_USM = sycl::malloc_shared<float>(m * n, queue);
...
queue.parallel_for(range(m, n), [=](auto index) {

auto i = index[0];
auto j = index[1];
for (int k=0; k<p; k++)

C_USM[i*n+j] += A_USM[i*p+k] * B_USM[k*n+j];
});

#pragma omp target teams distribute parallel for
#pragma omp target data map(to: A[0:m*p], B[0:p*n]) map(tofrom: C[0:m*n])
for (int i = 0; i < m; i++)

for (int j = 0; j < n; j++)
for (int k = 0; k < p; k++)

C[i*n+j] += A[i*p+k] * B[k*n+j];

Optimization Workflow VI: GPU Roofline Analysis of DPCPP Code

▪ Generate roofline for Gen9 graphics

27

advisor -collect tripcounts -profile-gpu -stacks -flop -project-dir ./gen9_result -- ./matmul_sycl.x

advisor -collect survey -profile-gpu -project-dir ./gen9_result -- ./matmul_sycl.x

Optimization Workflow VII : Minimization Analysis Overhead

▪ Techniques to minimize overhead:

▪ Collection controls:

▪ Pause/resume long analysis

▪ Stop collection after a specific time

▪ Skip unimportant phase of code execution such as initialization

▪ Loop markup:

▪ Skip unimportant loops and focus only on important ones

▪ Filtering:

▪ Skip unimportant functions and focus only on important ones

▪ Execution Speed/Duration/Scope Properties:

▪ Disable stack collection, increase sampling interval, etc

▪ https://software.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/minimize-analysis-overhead.html

28

#include "advisor-annotate.h"

void mat_mul(float *A, float *B, float *C,
int m, int n, int p) {

ANNOTATE_SITE_BEGIN();
for (int i = 0; i < m; i++) {

ANNOTATE_ITERATION_TASK();
for (int j = 0; j < n; j++)

for (int k = 0; k < p; k++)
C[i*n+j] += A[i*p+k] * B[k*n+j];

}
ANNOTATE_SITE_END();

}

https://software.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/minimize-analysis-overhead.html

Conclusion

▪ oneAPI allows developers archive best performance for heterogenous platforms:
▪ Easy to use with well designed user interfaces

▪ Memory access analysis to improve efficiency of vectorization

▪ Automated roofline analysis to understand hardware limitations

▪ Offload simulation to gauge potential performance gain on Intel GPUs before purchase

29

0.15

4.7
7.7

20.2

41.5

0

5

10

15

20

25

30

35

40

45

Baseline Cache Opt SIMD Aligned Gen9 Gen12

Pe
rf

 (
G

FL
O

P
S)

Matmul (2048 x 2048)

