FPGA Development Flow with Intel® oneAPI

oneAPl - 7} HREE Eol7| fIct A0(ESH 4]

2022. 04. 15.
MOASYS

oneAPI Smart Development Series (2021)

1. Introduction to Intel oneAPI for HPC and Al-DL
= https://www.allshowtv.com/detail.html|?idx=474

2. Benchmarking the Performance of oneAPl on Heterogeneous Computing Platforms
= https://www.allshowtv.com/detail.htmI?idx=660

3. Optimization and GPU Offloading Workflow with Intel oneAPI
= https://www.allshowtv.com/detail.htmI?idx=826

4. Leveraging Intel® oneDNN for Al Workload
= https://www.allshowtv.com/detail.htmI?idx=909

intel software 1 moosxs

https://www.allshowtv.com/detail.html?idx=474
https://www.allshowtv.com/detail.html?idx=660
https://www.allshowtv.com/detail.html?idx=826
https://www.allshowtv.com/detail.html?idx=909

oneAPI Smart Development Series (2022)

1. FPGA Development Flow with Intel® oneAPI Base Toolkit
= https://www.allshowtv.com/detail.html|?idx=995

2. OpenMP Offload with Intel® oneAPI HPC Toolkit
= TBA

3. Essential DPC++ Optimization Techniques for Accelerators
TBA

4. Introduction to Intel® oneAPI Rendering Toolkit
TBA

intel software 2 moosxs

https://www.allshowtv.com/detail.html?idx=995

Contents

oneAPlin 2022

= FPGA development workflow
= OpenMP GPU offload
= oneAPI rendering toolkits

FPGA Development Flow with one API Toolkits
= FPGA Emulation

= FPGA Optimization Report

= FPGA Bitstream compilation

Case Study:

= Accelerating Memory Bound Al Inference Workloads

Conclusion

intel software 3 moosxs

Overview of oneAPI for Heterogenous Computing

(HPCE
\ 20218

Application Workloads Need Diverse Hardware

Middleware & Frameworks

Best HPC Programming
Tool or Technology

I TensorFlow PyTOI’Ch @xnet @ (... ©OpenVIN® o

oneAPl

Open, Standards-Based oneApI Product

Unified Software Stack Compatibility Lafalia L Analysis &
Tool guages loraiis Debug Tools

Freedom from proprietary programming models Low-Level Hardware Interface

Full performance from the hardware XPUs

Piece of mind for developers GPU

= Support diverse accelerator devices (XPU) such as CPU, GPU and FPGA
= Continuously evolving specifications for high performance computing and machine learning

intel software 4 moosxs

oneAPI Industry Initiative Progress

A TE TEE

oneAPI Al Tech

Advisory Board
|ndustry Industry Initiative oneAPI set)Lljp

Announced

Initiative 1.0 Spec.

0.5 oneAPI Spec oneAPI 1.1

Provisional Spec. oneAPI oneAPI oneAPI 1.1
Level Zero, oneDNN

Graph, Advanced Ray Prov Spec. Prov Spec. Spec.
Tracing, oneVPL

CodePlay delivers Univ. Heidelberg Huawei extends Argonne, OLCF
oneAPI support for delivers DBC ¢ DPC++ support to provide SYCL

Aurora..

e for Ascent support for
|ndustry Nvidia GPUs, + AMD GPU support Alrchipset Ah'/:l)lr)) GPUs
Ad o pti o n OneM KL SuPport Building Block for the ExaScale Supercomputer
Fujitsu & Riken: il @i
oneDNN open source Bittware FPGA Sbercloud .1 SRS QRNEReY
on ARM fou Sut deploys oneAP| \dunches with OneAPI igiwe- intel
supercomputer training oneAPI for Al

development
> 2 Exaflops (2022)

NERSC, ALCF,
Codeplay to
enhance LLVM
SYCL GPU compiler oneAPI Developer Summits + Geo-targeted sessions
for Nvidia GPUs IWOCL ® Int'l SuperComputing B Intel Innovation ® SuperComputing

= Cross-Vendor implementations:
= ARM CPU: Fujitsu & Riken (Japan)
= NVIDIA GPU: CodePlay (USA), NERSC (USA), Argonne National Lab (USA)
= AMD GPU: Heidelberg Computing Center (Germany), Argonne National Lab (USA), Oak Ridge National Lab(USA)

intel software 5 moa sxs

Preview: OpenMP Offload Capabilities in oneAPl HPC Toolkit

Host Device

D
- alloc|...)
/

#pragma omp target \

map (alloc:...) \

from(..)

map (to:...) \
— map (from:...) 4-Tile
{ ...} >40 FP32 TFLOPS

= OpenMP: Portable, performance and productive parallel programming interface
= New compiler technology based on LLVM (DPCPP, ICX and IFX)

= Built-in support for X¢ GPUs

= Mixing host and GPU parallelism for maximum efficiency

= Support for Unified Share Memory (USM)

= Support for offloading oneMKL routines to GPUs

intel software 6 moosxs

Preview: Introduction to oneAPI| Rendering Toolkit

Intel® oneAPI Rendering Toolkit Libraries

Intel® Embree Intel® OSPRay Intel® Open Image Denoise Intel®” Open Volume Intel® OpenSWR

High-Performance, Feature-Rich Ray Scalable, Portable, Distributed AI-Acceleratgd Denoisgr for Superior Kernel Library High-Performan_ce, Scalablg, OpenGL*-
Tracing & Photorealistic Rendering Rendering API Visual Quality Render & Simulate 3D Spatial Data Compatible Rasterizer
Processing

-

= |ntel leadership in ray tracing for high performance graphics and compute

= Run at scale, from laptop to workstation and enterprise HPC cluster
= Hybrid rendering on Intel CPUs and X® GPUs
Visualize huge dataset interactively

Persistent memory support for reducing restart times and improving I/O performance

Combined volume and geometric rendering

High-fidelity visualization including shadows, ambient occlusion, global illumination, motion blur

intel software 7 moosxs

FPGA Architecture Overview

DSP Block RAM Block

=
-

HEEEEE

lll== (1 1]]
EENENNEENEENEEENE NN NN«

==
|]
n

= llll=
[| [1 []]
.....:'_'fﬁfﬁﬂs-a.ggpumsnummmanmununmmi

Adaptive Logic

SN {08 Module (ALM)

f::Q:Q:Q Q::‘ Programmable
Routing Switch

ALM

DSP(a+bxc)

out

out

» FPGA (Field-Programmable Gate Array)

= Reconfigurable semiconductor integrated circuit (IC).

= Adaptive logic module (ALM):
= Basic building block of FPGA

= Look-up table (LUT) and output register to build a logic circuit

= Register:

= Basic storage element of FPGA: input, output and clock signal (clk)

= Qutput is synchronized every clock cycle

= Digital processing block (DSP):

= Support for common fixed-point and floating-point arithmetic

intel software

moosxs

FPGA Design Concept: Basics

PIPELINE

REG

>

out

Delay: 20 ns / Latency: 2 Clks / Fmax: 50 Mhz

Critical Path
= The path between any two consecutive registers with the highest delay

Maximum frequency (f,,,)

= The maximum rate of output registry update, defined as 1/crital_path_delay
Latency

= How many clock cycles to complete operations in a digital circuit

Pipeline

= Adding registers to the critical path, which decreases the amount of logic between each register

= Increasement in f,_, but also in latency
Datapath

= A chain of registers and combinational logic in a digital circuit that performs computations.

= Input Reg -> A -> Pipeline Reg -> B -> Output Reg

Delay: 15 ns / Latency: 3 Clks / Fmax: 66.6 Mhz

intel software 9

moosxs

FPGA Design Concept: Pipeline Parallelism with Single-Work Item Kernel

. I
register register q.submit([&](handler& h) { (for (dmt 1 =17 4<n;i=) { |
% % h.single_task([=](){ |, SRl T e o a Rn :
for (int i = 0; i < kSize; ++i) { T !
Load Load r[i] = a[i] + b[i] L
|
register register = l
})s .
})s l
Add /‘— . i -+
u | Long
register) | depene
pipeline loop-iteration 3 load | Add |[Store |
register - :
egiste Store loop-iteration 2 Load | Add | Store
loop-iteration 1| Load Add Store Naive Compiler-optimized
implementation implementation

Time
= Advantages of using single-work item kernel over ND-range kernel
= Loop iteration as basic unit of execution, identical to standard C/C++ code
= Automatic creation of pipeline register by DPCPP compiler
= Automatic dependencies resolution by DPCPP compiler
= c[i- 1] stored in pipeline register and feedback loop is automatically created
= |nitiation Interval (ll):
= The number of clock cycles between the launch of successive loop iterations.
= For ideal pipeline with high throughput: Il =1

intel software 10 moosxs

FPGA vs. GPU: Al Inference for Autonomous Driving System

= GPU disadvantages:
= Batch inference requires addition synchronization

Batch
Input 1 =? Input 1

¢ |Linput2 | === | Input2 | I:> GPU
C 0 Lnput3 | == | input3 DNN
L1 1y Inputd Input 4
E i i Eq Latency4
- “" Latency3
“" Latency2
i"' Latency1

2

Result 1 Input 1 ﬁ => Result 1

Result 2 i {_Input 2 FPGA |——=)| Result2

Result 3 i 1 [Linputs | == | DNN |e==—==| Result3 |

Result4 | 111 Inputd Restlt4 |
.u: E ! E - Latencyd h ! EPE
> R Latency3 >
» Lo Latency2 B
o b Latency1 >

= Large batch size -> higher throughput and latency

= Small batch size -> lower throughput and latency

= FPGA advantages:

= Batch-less inference through pipeline parallelism (first in first out)

= Consistent and predictable latency and high throughput
= Train on GPU and inference on FPGA for autonomous driving application

intel software

11

moosxs

Intel FPGA Accelerators

P — — — — —— — — — ———————— — —

|
| CPU

: Maxeler APl and Drivers

|

l i PCle
|
|
|

Stratix 10

+ 378-5,510 KLE

* GHz core fabric

« 28/56-Gbps SERDES

+ 137 Mb embedded
Arria 10 e

+ DDR4 memory

* 160 -1,150 KLE - PCle Gen3 x16 (6)
- 25-Gbps SERDES « HBM DRAM

CPUI/0

Cyclone 10

Block RAM
(Local Mem.)

- 6-220 KLE I - Hard FP DSP
. 12.5-Gbps SERDES LU -+ ARM HPS or Nios Il

- 11 Mb embedded @ R s soft CPU

memory controllers 1,640 user /O
* PCle Gen3 x8 (4)

= Non Volatile controllers * Hard FP DSP
+ PCle Gen2 x4 * ARM HPS or Nios I

soft CPU
+ Hard FP DSP
= 40-2210LE * Analog hard IP -« 768 user /O
+ Nios Il soft CPU

+ 284 user /O

Kernel Pipeline
Features

= 2-50KLE » DDR3/L memory

FPGA orami/c

= Dual Config

= Non Volatile = DDR3 memory
= 8Kb User Flash = Nios Il soft CPU

Performance

= CPU offloads complex computation tasks to FPGA connected via PCl express
= Targeted workload: streaming analytics, fintech, genomics, artificial intelligence

intel software 12 moa sxs

Why is FPGA Compilation Different?

Functional
Iterations

Stage 1: Emulation
Compile to the FPGA Emulator

With oneAPI Data
Parallel C++ Compiler

Stage 2: Dpt|m|z§t1cm Report Architectural
Generation Iterations
Identify bottlenecks

With Intel® FPGA Add- Stage 3: FPGA Bitstream Compilation

On for DPC++ ==
Compller Get code ready to run on FPGAs

With Intel® VTune
Profiler

Stage 4 (optional): Runtime Analysis

= Key difference of development flow between FPGA and CPU (or GPU)

= Only ahead-of-time compilation is support due to very time consuming FPGA bitstream compilation

intel software 13 moa sxs

Types of DPC++ FPGA Compilation

= FPGA Emulation

= Generation of FPGA emulator image / FPGA Development FION

= Fastest method to verify the correctness of the code on CPU

= Timing on emulator does not corresponds to FPGA hardware | -
Coding
= FPGA Static Report ; Y
= Generation of FPGA early image (not executable) Seconds : (Fungg:all"’:};&'a‘ﬁon)
= Visualization of structure created by FPGA)
= Performance and bottleneck Minutes Static
= Estimation of resource utilization Reports
. - E Full Compile and
FPGA Hardware Compile and Profiling Hours 0 Hardware Profiling
= Generation of FPGA hardware image (bitstream) -
= Require Intel® FPGA Add-On for oneAPI Base Toolkit \ j
= Target Intel® Aria 10 GX, Stratix 10 SX or any custom board Deploy

intel software 14 moosxs

FPGA Compilation Flags

FPGA emulator image

dpcpp -fintelfpga -DFPGA_EMULATOR fpga_compile.cpp -o fpga_compile.fpga_emu

FPGA early image (with optimization report): default board
dpcpp -fintelfpga -Xshardware -fsycl-link=early fpga_compile.cpp -o fpga_compile_report.a

FPGA early image (with optimization report): explicit board
dpcpp -fintelfpga -Xshardware -fsycl-link=early -Xsboard=intel_s10@sx_pac:pac_s10 fpga_compile.cpp -o fpga_compile_report.a

FPGA hardware image: default board
dpcpp -fintelfpga -Xshardware fpga_compile.cpp -o fpga_compile.fpga

FPGA hardware image: explicit board
dpcpp -fintelfpga -Xshardware -Xsboard=intel_s10sx_pac:pac_s10 fpga_compile.cpp -o fpga_compile.fpga

Flag

-fintelfpga
-DFPGA_EMULATOR
-Xshardware
-fsycl-link=early
-Xsboard=<bsp:variant>
-Xsfast-compile

-reuse-exe=<exe_name>

Explanation

Performs ahead-of-time (offline) compilation for FPGA

Preprocessor for device selection

Instructs the compiler to target FPGA hardware (Default: FPGA emulator)

Instructs the compiler to stop after creating the FPGA early image (and associated optimization report)
Specifies the FPGA board variant (Default: Target Intel® Aria 10 GX)

Allows faster compile time but at a cost of reduced performance of the compiled FPGA hardware image

Instruct the compiler to attempt to reuse the existing FPGA device image for fast compilation

intel software

15

mooszs

FPGA Device Selector

#include <CL/sycl.hpp>

// FPGA device selectors are defined in this utility header, along with
// all FPGA extensions such as pipes and fpga _reg
#include <sycl/ext/intel/fpga_extensions.hpp>

int main() {
// Select either:
// - the FPGA emulator device (CPU emulation of the FPGA)
// - the FPGA device (a real FPGA, can be used for simulation too)
#if defined(FPGA_EMULATOR)
ext::intel::fpga_emulator_selector device_selector;
#else
ext::intel::fpga_selector device_selector;
#endif

queue q(device_selector);
// Print out the device information.
std::cout << "Running on device: "
<< q.get_device().get_info<info::device::name>() << "\n";
}

= FPGA emulator and FPGA are distintive devices
= Only a head of time compilation supported, making the default selector less useful

intel software 16 moosxs

FPGA Sample Code: VecAdd

std::vector<int> vec_a(kSize), vec_b(kSize), vec_r(kSize);

for (int i = @; i < kSize; i++) {
vec_a[i] = rand();
vec_b[i] = rand();

}

// Create buffers to share data between host and device.

// The runtime will copy the necessary data to the FPGA device memory when the kernel 1is Llaunched.
buffer buf a(vec a);

buffer buf b(vec b);

buffer buf r(vec r);

// Submit a command group to the device queue.
g.submit([&] (handler& h) {
// The SYCL runtime uses the accessors to infer data dependencies.
// A "read" accessor must wait for data to be copied to the device before the kernel can start.
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor r(buf_r, h, write_only, no_init);

// The task's for loop is executed in pipeline parallel on the FPGA
h.single_task<VectorAdd>([=]() [[intel::kernel_args restrict]] {
for (int i = @; i < kSize; ++i) {
r[i] = a[i] + b[i];
}
})s
})s

intel software 17 moa sxs

FPGA Fast Compilation: Reuse FPGA Hardware Image

Initial compilation
dpcpp -fintelfpga -Xshardware <files.cpp> -o out.fpga

Subsequent recompilation
dpcpp <files.cpp> -o out.fpga -reuse-exe=out.fpga -Xshardware -fintelfpga
= AOT compilation takes several hours to generate FPGA hardware image

= -reuse-exe=<exe_name> to instruct the compiler to reuse the existing FPGA device image.
= Separating the host and device code into separate files, i.e device link method

= Reuse FPGA image
= |f no change in device code is detected by compiler, only host code is recompiled (few minutes)
= |[f changes in device is detected by compiler, FPGA device is fully recompiled (few hours)

= Caveats:
= Strong coupling between host and devices code within single source file
= Very limited in practice, probably only suitable for simple design
= Recompilation triggering when compiler falsely detect change in device code

intel software 18 moosxs

FPGA Fast Compilation: Device Link Method

Source file contains device
code: kernel.cpp

Source file only contains
host code: main.cpp

Objectfile: dev.o Objectfile: host.o

In this step, FPGA device
gets generated. The process
can take hours to complete.

FPGA device image object:
dev_image.a

Executable: device 1link.fpga

Compile device code
dpcpp -fintelfpga -fsycl-link=image kernel.cpp -o dev_image.a -Xshardware

Compile host code (redo after host code changed)
dpcpp -fintelfpga host.cpp -c -0 host.o

Create device Link (redo after host code changed)
dpcpp -fintelfpga host.o dev_image.a -o fast_recompile.fpga

intel software 19 moa sxs

Hough Transformation for Boundary Detection

Image Space

for all x

for all y

Parameter Space

*3.y —

e _b -X,m + y 5in@

if edge point is at (x,y)

end

end
end

for all thetas:
rho = x * cos(theta) + y * sin(theta)
accumulator(rho, theta) += 1

p

y= -cosBx+ p
sing sing

Input (edge detected)

Output (line detected)

= Consider a set of (x;, y;) corresponds to detected edges of image object:
= y; = mXx; + b (point/image space) <> b = —mx; + y; (line/parameter space)

= Detection of vertical lines: parameterized representation (p, 8)

T = ey e
—
[

intel software

20

moaszs

FPGA Performance Optimization: Hough Transformation

queue_event = device queue.submit([&](sycl::handler &cgh) {
//Create accessors
auto pixels
auto _sin_table
auto _cos_table
auto _accumulators

pixels buf.get access<sycl::access::mode::read>(cgh);

sin_table buf.get access<sycl::access::mode::read>(cgh);
cos_table buf.get access<sycl::access::mode::read>(cgh);
accumulators buf.get access<sycl::access::mode::read write>(cgh);

//Call the kernel
cgh.single_task<class Hough_transform_kernel>([=]() {
for (uint y=0; y<HEIGHT; y++) {
for (uint x=0; x<WIDTH; x++){
unsigned short int increment = 0;
if (_pixels[(WIDTH*y)+x] != 0) {
increment = 1;
} else {
increment = 0;

}

for (int theta=0; theta<THETAS; theta++){
int rho = x*_cos_table[theta] + y* sin_table[theta];
_accumulators[(THETAS*(rho+RHOS))+theta] += increment;

}
});
1)

= accumulators matrix is updated by scanning over possible value of thetas

intel 21 MOAsys

FPGA Performance Optimization: Early Image Report

System Viewers ¥ ‘ O O O

Reports ‘ Summary H Throughput Analysis ~ ‘ Area Analysis

: i (] Show blocks : :
Loop List -~ Loop Analysis - hough_transform_kernel.cpp v X
52~ for (uint y=0; y<HEIGHT; y++) { -
4 System Block Block 53 - for (uint x=8; x<WIDTH; x++){
Y) Scheduled Scheduled 54 unsigned short int increment = @;
Kernel: Hough_transforn Source Location Pipelined Il fMAX Late 55~ if (_pixels[(WIDTH*y)+x] != @) {
4 Hough_transform_ker 56 increment = 1;
57~ } else {
4 Hough_transform_} 58 increment = @;
Hough_transforn 59 ¥
31 hough_transform_kernel.cpp:52 Yes 1 240.00 11.00 68 - | for (int theta=@; theta<THETAS; theta++){
b1 int rho = x*_cos_table[theta] + ¥
LB3 hough_transform_kernel.cpp:5a 3 1 240.00 208, * sin_table[theta];
62 _accumulators[(THETAS* (rho+RHOS))+theta] +=
el.B5 ough_transform_kernel.cppe0 | Yes 464 248,00 713 63) ncrement;
64)
< yood > 65 } v
Bottlenecks Details X

4 Throughput bottlenecks
kO_ZTS22Hough_transfo

= Generate early image (not executable) with architecture optimization report:
= dpcpp -fintelfpga -Xshardware -fsycl-link=early main.cpp hough_transform.cpp -o fpga_compile report.a

= HTML report: foga _compile_report.pri/reports/report.html

intel software 22 moosxs

FPGA Performance Optimization: Avoid Aliasing of Kernel Arguments

Reports ‘ Summary H Throughput Analysis > H Area Analysis ¥ ‘ System Viewers ¥ ‘ O 0 0

Loop List . Loop Analysis L) Show blocks hough_transform_kernel.cpp vioX
57 - for (uint x=8; x<WIDTH; x++){ -

4 System Block Block 58 unsigned short int increment = @;

) Scheduled Scheduled 59 - if (_pixels[{WIDTH*y)+x] = @) {
“ Kernel: Hough_transfol g, e Location Pipelined I fMAX lat 6@ increment = 1;
4 Hough_transform_k g;- }glse { o
4 Hough_transform 63 3 rnerenen ’

Hough_transfo 64 - | for (int theta=0; theta<THETAS; theta++){
hough_transform_kernel.cpp:56 Yes 1 240.00 12.0 65 int rho = x*_cos_table[theta] + y
* sin_table[theta];

hough_transform kernel.cpp:57 = Yes 1 240.00 203, 65 _accumulators[(THETAS* (rho+RHOS))+theta]
+= increment;

hough_transform_kernel.cpp:64 Yes 233 .00 481, g; } ;
69 ¥
4 3 > 70 b
Bottlenecks Details X

4 Throughput bottlenecks

«0_ZTS22Hough_trans cgh.single task([=]() [[intel::kernel_args_restrict]] {}

= Pointer aliasing occurs when the same memory location is accessed using different names
= kernel_args_restrict for more aggressive compiler optimizations and improved FPGA performance

intel software 23 moosxs

FPGA Performance Optimization: Local Memory

Reports ‘ Summary H Throughput Analysis ~ H Area Analysis ~ ‘ System Viewers ¥ ‘ O m| ad

- ' (] Show blocks
Loop List - Loop Analysis — hough_transform_kernel.cpp v X
T R - 57 - for (uint y=8; y<HEIGHT; y++) { -
4 System 58 - for (uint x=0; x<WIDTH; x++){
nel 59 unsigned short int increment = @;
4 Kernel: Hough_transfo 60 ~ if (_pixels[(WIDTH*y)+x] != @) {
Hough_transform_k =lB2 hough_transform_kernel.cpp:54 Yes 1 240.00 61 increment = 1;
62~ } else {
4 Hough_transform_k - - a-
ah- - cl.B4 hough_transform_kernel.cpp:57 Yes 1 240,00 = increment e;
4 Hough_transform 64 ¥
65~ | for (int theta=8; theta<THETAS; theta++){
HougijransﬁJ nel.B6 hough_transform kernel.cpp:58 Yes 1 240.00 66 int rho = x* cos table[theta] + v

* sin_table[theta];
67 accum_local[(THETAS* {rho+RHOS))+theta]
+= increment;

Hough_transform_k

ernel.B8 ¢ hough_transform_kernel.cpp:65

=l.B9 ough_transform_kernel.cpp:72 68 ¥
N 69 L
] » 4 3 70 i =
Bottlenecks Details X

4 Throughput bottlenecks
kO_7ZTS22Hough_trans

= Slow data retrieval from global memory, increasing initiation interval (I1)
= Local memory is referred to as on-chip memory created from FPGA’s RAM blocks

intel software 24 moosxs

FPGA Performance Optimization: Loop Unroll and IVDEP

Reports ‘ Summary H Throughput Analysis ~ H Area Analysis ¥ ‘

System Viewers ¥ ‘

Loop List 5= Loop Analysis L) Show blocks hough_transform_kernel.cpp v X
e A 61 increment = 1; -
4 System 62 }oelse {
nel 63 increment = @;
4 Kernel: Hough_transfo 64 }
Hough_transform_k 1el.B2 hough_transform_kernel.cpp:54 | Yes 1 240.00 65
u ht f K 66 #pragma unroll 32
4 Hou ransform_k . L
an- - 1elB4 hough_transform_kernel.cpp:57 | Yes 1 240.00 = [[:Lnt?lfpga. +ivdep]]
4 Hough_transform - - 68~ | for (int theta=8; theta<THETAS; theta++){
o 69 int rho = x*_cos_table[theta] + ¥
32X Partially w1 'mnelB& hough_transform kernel.cpp:58 Yes 1 240.00 * sin_table[theta];
Hough_transform_ki o~ 78 accum_lc_:cal[{THETAS* {rho+RHOS))+theta]
cerngl.B7 hough_transform_kernel.cpp:68 = Yes 1 _) 240.00 += increment;
71 h
1el.Bs hough_transform_kernel.cpp:75 Yes 1 240.00 i) ¥
73
1 » 4 3 74 /f5tore from local to global memory -
Bottlenecks Details X

4 Throughput bottlenecks
kO_7ZTS22Hough_trans

= |mproved parallelism by duplicating the compute logic with loop unrolling
= |gnore loop carries dependency based on iteration distance across multiple loops

intel software 25

moosxs

FPGA Performance Optimization: Hough Transformation Summary

cgh.single_task([=]() [[intel::kernel_args_restrict]] {

}):

//Load from global to local memory
short accum_local[RHOS*2*THETAS];
for (int i = @; i < RHOS*2*THETAS; i++) {
accum_local[i] = ©;
}
for (uint y=0; y<HEIGHT; y++) {
for (uint x=0; x<WIDTH; x++){
unsigned short int increment = 0;
if (_pixels[(WIDTH*y)+x] != 0) {
increment = 1;
} else {
increment = 0;

}

#pragma unroll 32

[[intel: :ivdep]]

for (int theta=0; theta<THETAS; theta++){
int rho = x*_cos_table[theta] + y* sin_table[theta];
accum_local[(THETAS*(rho+RHOS))+theta] += increment;

}

}
//Store from local to global memory

for (int i = @; i < RHOS*2*THETAS; i++) {
_accumulators[i] = accum_local[i];

}

intel software

26

moosxs

Explore DPC++ Through Intel® FPGA Code Samples

; Prerequisites
Tier1 :
Get Started FPGA Optimization
fpga_compile fast_recompile ‘Guide for Intel® oneAP| leze"d for FPGA
- Toolkits, Chapter 1 Samples
l - Get Started
3 Documentation
Tier2 kernel_args_restrict
Explore the e . Basic Features

Fundamentals

Tier 3
Explore the
Advanced
Techniques

Tier 4
Explore the
Reference
Designs

dsp_control

scheduler_
target_fmax

speculated _
iterations

- =

dynamic_profiling

g

loop_unroll

memory_
attributes

fpga_reg
Isu_control
mem_channel

private_copies

read_only_cache

double_buffering

loop_coalesce
loop_fusion

loop_initiation_
interval

loop_carried_
dependency

2
g
g

nvdr
gzip merge_sorn o qri
beamforming

n_way_
buffering

system_
profiling

- Advanced Features

- Design Patterns

- Tools

. Reference Designs

https://www.intel.com/content/www/us/en/developer/articles/code-sample/explore-dpcpp-through-intel-fpga-code-samples.html

intel software

27

moosxs

https://www.intel.com/content/www/us/en/developer/articles/code-sample/explore-dpcpp-through-intel-fpga-code-samples.html

Case Study: Accelerating Memory Bound Al Inference Workloads

Intel® FPGA
System

Bias,
x —— L —
Lin

= Recurrent Neural Network (RNN):
= Reflect the influence of past data on current data
= Finance, genome mapping, speech Al, automatic speech recognition (ASR), etc
= Repeated application of weight matrix each time step, i.e low latency required for real time application
= Suitable for FPGA accelerator thanks to pipeline parallelism
= |ntel Stratix 10 MX FPGA:
= Single package of a state-of-the-art Intel® FPGA with Samsung High Bandwidth Memory 2 (HBM?2)
= 10x bandwidth with highest performance per Watt in comparison to SDRAM
= Programmable high performance Al inference accelerator for Intel FPGAs

intel software 28 moosxs

Case Study: Accelerating Memory Bound Al Inference Workloads

Inference Latency

Intel® Stratix® 10 MX FPGA(PIE) vs.
NVIDIA P4 GPU with GDDR5 Memory

(Mozilla DeepSpeech, 1s of audio, single batch)

0.14

0.12

0.1

0.08

Seconds

0.06

0.04

0.02 :-
0

Intel Stratix 10 MX FPGA

(with HBM) 16bINT

NVIDIA P4
(with GDDRS5) Float16

0.036

0.034

0.032

0.03

0.028

0.026

0.024

0.022

Inference Latency
Intel® Stratix® 10 MX FPGA(PIE) vs.
NVIDIA V100 GPU with HBM

(Mozilla DeepSpeech, 1s of audio, single batch)

Intel Stratix 10 MX FPGA NVIDIA V100 (with HEM) Float16v
(with HBM) 16bINT

= Mozilla DeepSpeech algorithm was accelerated using Intel FPGA

= Stratix 10MX has ~ 4x lower latency than NVIDIA P4

= Stratix 10MX has ~ 20% lower latency than NVIDIA V100 (HBM)

intel software

29

moosxs

Conclusion

FPGA offers advantages over traditional accelerators such as CPU and GPU
= Highly efficiency via pipeline parallelism
= Data dependency across parallel work automatically resolved by DPCPP compiler

FPGA development workflow with oneAPI

= Emulation -> optimization report -> bitstream compilation
= Single-work item kernel instead ND-range kernel

= Optimization techniques

FPGA case study
= Stratix 10 MX offer lower latency than GPUs for RNN workload

Contact: sales@moasys.com
= GPU, FPGA code migration
= Optimization and parallelization consultant

= Customized HPC education

intel software 30 moosxs

mailto:sales@moasys.com

