
FPGA Development Flow with Intel® oneAPI

oneAPI – 가속 컴퓨팅을 개발하기 위한 스마트한 방식

2022. 04. 15.
MOASYS

oneAPI Smart Development Series (2021)

1. Introduction to Intel oneAPI for HPC and AI-DL

▪ https://www.allshowtv.com/detail.html?idx=474

2. Benchmarking the Performance of oneAPI on Heterogeneous Computing Platforms

▪ https://www.allshowtv.com/detail.html?idx=660

3. Optimization and GPU Offloading Workflow with Intel oneAPI

▪ https://www.allshowtv.com/detail.html?idx=826

4. Leveraging Intel® oneDNN for AI Workload

▪ https://www.allshowtv.com/detail.html?idx=909

1

https://www.allshowtv.com/detail.html?idx=474
https://www.allshowtv.com/detail.html?idx=660
https://www.allshowtv.com/detail.html?idx=826
https://www.allshowtv.com/detail.html?idx=909

oneAPI Smart Development Series (2022)

1. FPGA Development Flow with Intel® oneAPI Base Toolkit

▪ https://www.allshowtv.com/detail.html?idx=995

2. OpenMP Offload with Intel® oneAPI HPC Toolkit

▪ TBA

3. Essential DPC++ Optimization Techniques for Accelerators

▪ TBA

4. Introduction to Intel® oneAPI Rendering Toolkit

▪ TBA

2

https://www.allshowtv.com/detail.html?idx=995

Contents

▪ oneAPI in 2022

▪ FPGA development workflow

▪ OpenMP GPU offload

▪ oneAPI rendering toolkits

▪ FPGA Development Flow with one API Toolkits

▪ FPGA Emulation

▪ FPGA Optimization Report

▪ FPGA Bitstream compilation

▪ Case Study:
▪ Accelerating Memory Bound AI Inference Workloads

▪ Conclusion

3

Overview of oneAPI for Heterogenous Computing

▪ Support diverse accelerator devices (XPU) such as CPU, GPU and FPGA

▪ Continuously evolving specifications for high performance computing and machine learning

4

oneAPI Industry Initiative Progress

▪ Cross-Vendor implementations:
▪ ARM CPU: Fujitsu & Riken (Japan)
▪ NVIDIA GPU: CodePlay (USA), NERSC (USA), Argonne National Lab (USA)
▪ AMD GPU: Heidelberg Computing Center (Germany), Argonne National Lab (USA), Oak Ridge National Lab(USA)

5

> 2 Exaflops (2022)

Preview: OpenMP Offload Capabilities in oneAPI HPC Toolkit

▪ OpenMP: Portable, performance and productive parallel programming interface

▪ New compiler technology based on LLVM (DPCPP, ICX and IFX)

▪ Built-in support for Xe GPUs

▪ Mixing host and GPU parallelism for maximum efficiency

▪ Support for Unified Share Memory (USM)

▪ Support for offloading oneMKL routines to GPUs

6

Preview: Introduction to oneAPI Rendering Toolkit

▪ Intel leadership in ray tracing for high performance graphics and compute

▪ Run at scale, from laptop to workstation and enterprise HPC cluster

▪ Hybrid rendering on Intel CPUs and Xe GPUs

▪ Visualize huge dataset interactively

▪ Persistent memory support for reducing restart times and improving I/O performance

▪ Combined volume and geometric rendering

▪ High-fidelity visualization including shadows, ambient occlusion, global illumination, motion blur

7

FPGA Architecture Overview

▪ FPGA (Field-Programmable Gate Array)

▪ Reconfigurable semiconductor integrated circuit (IC).

▪ Adaptive logic module (ALM):

▪ Basic building block of FPGA

▪ Look-up table (LUT) and output register to build a logic circuit

▪ Register:

▪ Basic storage element of FPGA: input, output and clock signal (clk)

▪ Output is synchronized every clock cycle

▪ Digital processing block (DSP):

▪ Support for common fixed-point and floating-point arithmetic

8

ALM Register DSP (a + b x c)

FPGA Design Concept: Basics

▪ Critical Path
▪ The path between any two consecutive registers with the highest delay

▪ Maximum frequency (fmax)
▪ The maximum rate of output registry update, defined as 1/crital_path_delay

▪ Latency
▪ How many clock cycles to complete operations in a digital circuit

▪ Pipeline
▪ Adding registers to the critical path, which decreases the amount of logic between each register

▪ Increasement in fmax but also in latency

▪ Datapath
▪ A chain of registers and combinational logic in a digital circuit that performs computations.

▪ Input Reg -> A -> Pipeline Reg -> B -> Output Reg

9

Delay: 20 ns / Latency: 2 Clks / Fmax: 50 Mhz Delay: 15 ns / Latency: 3 Clks / Fmax: 66.6 Mhz

FPGA Design Concept: Pipeline Parallelism with Single-Work Item Kernel

▪ Advantages of using single-work item kernel over ND-range kernel
▪ Loop iteration as basic unit of execution, identical to standard C/C++ code
▪ Automatic creation of pipeline register by DPCPP compiler
▪ Automatic dependencies resolution by DPCPP compiler

▪ c[i - 1] stored in pipeline register and feedback loop is automatically created

▪ Initiation Interval (II):
▪ The number of clock cycles between the launch of successive loop iterations.
▪ For ideal pipeline with high throughput: II = 1

10

q.submit([&](handler& h) {
h.single_task([=](){

for (int i = 0; i < kSize; ++i) {
r[i] = a[i] + b[i]

}
});

});

pipeline
register

FPGA vs. GPU: AI Inference for Autonomous Driving System

▪ GPU disadvantages:

▪ Batch inference requires addition synchronization

▪ Large batch size -> higher throughput and latency

▪ Small batch size -> lower throughput and latency

▪ FPGA advantages:

▪ Batch-less inference through pipeline parallelism (first in first out)

▪ Consistent and predictable latency and high throughput

▪ Train on GPU and inference on FPGA for autonomous driving application

11

Intel FPGA Accelerators

▪ CPU offloads complex computation tasks to FPGA connected via PCI express

▪ Targeted workload: streaming analytics, fintech, genomics, artificial intelligence

12

Why is FPGA Compilation Different?

▪ Key difference of development flow between FPGA and CPU (or GPU)

▪ Only ahead-of-time compilation is support due to very time consuming FPGA bitstream compilation

13

Types of DPC++ FPGA Compilation

▪ FPGA Emulation

▪ Generation of FPGA emulator image

▪ Fastest method to verify the correctness of the code on CPU

▪ Timing on emulator does not corresponds to FPGA hardware

▪ FPGA Static Report

▪ Generation of FPGA early image (not executable)

▪ Visualization of structure created by FPGA

▪ Performance and bottleneck

▪ Estimation of resource utilization

▪ FPGA Hardware Compile and Profiling

▪ Generation of FPGA hardware image (bitstream)

▪ Require Intel® FPGA Add-On for oneAPI Base Toolkit

▪ Target Intel® Aria 10 GX, Stratix 10 SX or any custom board

14

FPGA Compilation Flags

15

FPGA emulator image
dpcpp -fintelfpga -DFPGA_EMULATOR fpga_compile.cpp -o fpga_compile.fpga_emu

FPGA early image (with optimization report): default board
dpcpp -fintelfpga -Xshardware -fsycl-link=early fpga_compile.cpp -o fpga_compile_report.a

FPGA early image (with optimization report): explicit board
dpcpp -fintelfpga -Xshardware -fsycl-link=early -Xsboard=intel_s10sx_pac:pac_s10 fpga_compile.cpp -o fpga_compile_report.a

FPGA hardware image: default board
dpcpp -fintelfpga -Xshardware fpga_compile.cpp -o fpga_compile.fpga

FPGA hardware image: explicit board
dpcpp -fintelfpga -Xshardware -Xsboard=intel_s10sx_pac:pac_s10 fpga_compile.cpp -o fpga_compile.fpga

Flag Explanation

-fintelfpga Performs ahead-of-time (offline) compilation for FPGA

-DFPGA_EMULATOR Preprocessor for device selection

-Xshardware Instructs the compiler to target FPGA hardware (Default: FPGA emulator)

-fsycl-link=early Instructs the compiler to stop after creating the FPGA early image (and associated optimization report)

-Xsboard=<bsp:variant> Specifies the FPGA board variant (Default: Target Intel® Aria 10 GX)

-Xsfast-compile Allows faster compile time but at a cost of reduced performance of the compiled FPGA hardware image

-reuse-exe=<exe_name> Instruct the compiler to attempt to reuse the existing FPGA device image for fast compilation

FPGA Device Selector

▪ FPGA emulator and FPGA are distintive devices

▪ Only a head of time compilation supported, making the default_selector less useful

16

#include <CL/sycl.hpp>

// FPGA device selectors are defined in this utility header, along with
// all FPGA extensions such as pipes and fpga_reg
#include <sycl/ext/intel/fpga_extensions.hpp>

int main() {
// Select either:
// - the FPGA emulator device (CPU emulation of the FPGA)
// - the FPGA device (a real FPGA, can be used for simulation too)
#if defined(FPGA_EMULATOR)

ext::intel::fpga_emulator_selector device_selector;
#else

ext::intel::fpga_selector device_selector;
#endif

queue q(device_selector);
...

// Print out the device information.
std::cout << "Running on device: "

<< q.get_device().get_info<info::device::name>() << "\n";
...
}

FPGA Sample Code: VecAdd

17

std::vector<int> vec_a(kSize), vec_b(kSize), vec_r(kSize);

for (int i = 0; i < kSize; i++) {
vec_a[i] = rand();
vec_b[i] = rand();

}

// Create buffers to share data between host and device.
// The runtime will copy the necessary data to the FPGA device memory when the kernel is launched.
buffer buf_a(vec_a);
buffer buf_b(vec_b);
buffer buf_r(vec_r);

// Submit a command group to the device queue.
q.submit([&](handler& h) {

// The SYCL runtime uses the accessors to infer data dependencies.
// A "read" accessor must wait for data to be copied to the device before the kernel can start.
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor r(buf_r, h, write_only, no_init);

// The task's for loop is executed in pipeline parallel on the FPGA
h.single_task<VectorAdd>([=]() [[intel::kernel_args_restrict]] {

for (int i = 0; i < kSize; ++i) {
r[i] = a[i] + b[i];

}
});

});

FPGA Fast Compilation: Reuse FPGA Hardware Image

▪ AOT compilation takes several hours to generate FPGA hardware image

▪ -reuse-exe=<exe_name> to instruct the compiler to reuse the existing FPGA device image.

▪ Separating the host and device code into separate files, i.e device link method

▪ Reuse FPGA image

▪ If no change in device code is detected by compiler, only host code is recompiled (few minutes)

▪ If changes in device is detected by compiler, FPGA device is fully recompiled (few hours)

▪ Caveats:

▪ Strong coupling between host and devices code within single source file

▪ Very limited in practice, probably only suitable for simple design

▪ Recompilation triggering when compiler falsely detect change in device code

18

Initial compilation
dpcpp -fintelfpga -Xshardware <files.cpp> -o out.fpga

Subsequent recompilation
dpcpp <files.cpp> -o out.fpga -reuse-exe=out.fpga -Xshardware -fintelfpga

FPGA Fast Compilation: Device Link Method

19

Compile device code
dpcpp -fintelfpga -fsycl-link=image kernel.cpp -o dev_image.a -Xshardware

Compile host code (redo after host code changed)
dpcpp -fintelfpga host.cpp -c -o host.o

Create device link (redo after host code changed)
dpcpp -fintelfpga host.o dev_image.a -o fast_recompile.fpga

Hough Transformation for Boundary Detection

▪ Consider a set of (𝒙𝒊, 𝒚𝒊) corresponds to detected edges of image object:

▪ 𝒚𝒊 = 𝒎𝒙𝒊 + 𝒃 (point/image space) ↔ 𝒃 = −𝒎𝒙𝒊 + 𝒚𝒊 (line/parameter space)

▪ Detection of vertical lines: parameterized representation (𝜌, 𝜃)

20

Input (edge detected) Output (line detected)

for all x
for all y

if edge point is at (x,y)
for all thetas:

rho = x * cos(theta) + y * sin(theta)
accumulator(rho, theta) += 1

end
end

end
end

queue_event = device_queue.submit([&](sycl::handler &cgh) {
//Create accessors

auto _pixels = pixels_buf.get_access<sycl::access::mode::read>(cgh);
auto _sin_table = sin_table_buf.get_access<sycl::access::mode::read>(cgh);
auto _cos_table = cos_table_buf.get_access<sycl::access::mode::read>(cgh);
auto _accumulators = accumulators_buf.get_access<sycl::access::mode::read_write>(cgh);

//Call the kernel
cgh.single_task<class Hough_transform_kernel>([=]() {

for (uint y=0; y<HEIGHT; y++) {
for (uint x=0; x<WIDTH; x++){

unsigned short int increment = 0;
if (_pixels[(WIDTH*y)+x] != 0) {

increment = 1;
} else {

increment = 0;
}

for (int theta=0; theta<THETAS; theta++){
int rho = x*_cos_table[theta] + y*_sin_table[theta];
_accumulators[(THETAS*(rho+RHOS))+theta] += increment;

}
}

}
});

});

FPGA Performance Optimization: Hough Transformation

▪ _accumulators matrix is updated by scanning over possible value of thetas

21

FPGA Performance Optimization: Early Image Report

▪ Generate early image (not executable) with architecture optimization report:
▪ dpcpp -fintelfpga -Xshardware -fsycl-link=early main.cpp hough_transform.cpp -o fpga_compile_report.a

▪ HTML report: fpga_compile_report.prj/reports/report.html

22

FPGA Performance Optimization: Avoid Aliasing of Kernel Arguments

▪ Pointer aliasing occurs when the same memory location is accessed using different names

▪ kernel_args_restrict for more aggressive compiler optimizations and improved FPGA performance

23

cgh.single_task([=]() [[intel::kernel_args_restrict]] {}

FPGA Performance Optimization: Local Memory

▪ Slow data retrieval from global memory, increasing initiation interval (II)

▪ Local memory is referred to as on-chip memory created from FPGA’s RAM blocks

24

FPGA Performance Optimization: Loop Unroll and IVDEP

▪ Improved parallelism by duplicating the compute logic with loop unrolling

▪ Ignore loop carries dependency based on iteration distance across multiple loops

25

FPGA Performance Optimization: Hough Transformation Summary

26

cgh.single_task([=]() [[intel::kernel_args_restrict]] {
//Load from global to local memory
short accum_local[RHOS*2*THETAS];
for (int i = 0; i < RHOS*2*THETAS; i++) {

accum_local[i] = 0;
}
for (uint y=0; y<HEIGHT; y++) {

for (uint x=0; x<WIDTH; x++){
unsigned short int increment = 0;

if (_pixels[(WIDTH*y)+x] != 0) {
increment = 1;

} else {
increment = 0;

}

#pragma unroll 32
[[intel::ivdep]]
for (int theta=0; theta<THETAS; theta++){

int rho = x*_cos_table[theta] + y*_sin_table[theta];
accum_local[(THETAS*(rho+RHOS))+theta] += increment;

}
}

}
//Store from local to global memory
for (int i = 0; i < RHOS*2*THETAS; i++) {

_accumulators[i] = accum_local[i];
}

}):

Explore DPC++ Through Intel® FPGA Code Samples

27

https://www.intel.com/content/www/us/en/developer/articles/code-sample/explore-dpcpp-through-intel-fpga-code-samples.html

https://www.intel.com/content/www/us/en/developer/articles/code-sample/explore-dpcpp-through-intel-fpga-code-samples.html

Case Study: Accelerating Memory Bound AI Inference Workloads

▪ Recurrent Neural Network (RNN):

▪ Reflect the influence of past data on current data

▪ Finance, genome mapping, speech AI, automatic speech recognition (ASR), etc

▪ Repeated application of weight matrix each time step, i.e low latency required for real time application

▪ Suitable for FPGA accelerator thanks to pipeline parallelism

▪ Intel Stratix 10 MX FPGA:

▪ Single package of a state-of-the-art Intel® FPGA with Samsung High Bandwidth Memory 2 (HBM2)

▪ 10x bandwidth with highest performance per Watt in comparison to SDRAM

▪ Programmable high performance AI inference accelerator for Intel FPGAs

28

Case Study: Accelerating Memory Bound AI Inference Workloads

▪ Mozilla DeepSpeech algorithm was accelerated using Intel FPGA

▪ Stratix 10MX has ~ 4x lower latency than NVIDIA P4

▪ Stratix 10MX has ~ 20% lower latency than NVIDIA V100 (HBM)

29

Conclusion

▪ FPGA offers advantages over traditional accelerators such as CPU and GPU

▪ Highly efficiency via pipeline parallelism

▪ Data dependency across parallel work automatically resolved by DPCPP compiler

▪ FPGA development workflow with oneAPI

▪ Emulation -> optimization report -> bitstream compilation

▪ Single-work item kernel instead ND-range kernel

▪ Optimization techniques

▪ FPGA case study

▪ Stratix 10 MX offer lower latency than GPUs for RNN workload

▪ Contact: sales@moasys.com

▪ GPU, FPGA code migration

▪ Optimization and parallelization consultant

▪ Customized HPC education

30

mailto:sales@moasys.com

